Mechanics of Solids-2 Lecture # 9
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Learning Outcome

* Bending about both Principal Axis
* Elastic Bending with Axial Loads

* Kern of Section
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Bending about Both Principal Axis
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Bending about Both Principal Axis
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(a) (b}
Fig. 6-33 Unsymmetrical bending of a beam with doubly symmetric cross section.
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Bending about Both Principal Axis

As a simple example of skew or unsymmetrical pure bending, consider
the rectangular beam shown in Fig. 6-33. The applied moments M act in
the plane abcd. By using the vector representation for M shown in Fig.
6-33(b), this vector forms an angle « with the z axis and can be resolved
into the two components, M, and M. Since the cross section of this beam
has symmetry about both axes, the formulas derived in Section 6-3 are
directly applicable. Because of symmetry, the product of inertia for this
section is zero, and the orthogonal axes shown are the principal axes for
the cross section. This also holds true for the centroidal axes of singly
symmetric areas. (For details see Sections 6-15 and 6-16.)

By assuming elastic behavior of the material, a superposition of the
stresses caused by M, and M. is the solution to the problem. Hence, using
Egs. 6-11 and 6-12,

My . M,z

Lt (6-41)

O, =

where all terms have the previously defined meanings.
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Bending about Both Principal Axis
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Fig. 6-34 Superposition of elastic bending stresses.
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Bending about Both Principal Axis

A graphical illustration of superposition is given in Fig. 6-34. Note that
a line of zero stress, 1.e., a neutral axis, forms at an angle B with the 7
axis. Analytically, such an axis can be determined by setting the stress
given by Eq. 6-41 fo zero, i.e.,

o

M M
2 tanﬁ=2=M”

. I, e Mg, O

Since, in general, M, = M sin « and M; = M cos «, this equation reduces
to

I
tan B = 7 tan o (6-43)
¥

This equation shows that unless I, = I, or « is either 0° or 90°, the

angles « and B are not equal. Therefore, in general, the neutral axis and
the normal to a plane in which the applied moment acts do not coincide.
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Bending about Both Principal Axis — Example Problem

The 100 by 150 mm wooden beam shown in Fig. 6-36(a) is used to support a
uniformly distributed load of 4 kIN (total) on a simple span of 3 m. The applied
load acts in a plane making an angle of 30° with the vertical, as shown in Fig. 6-
16(b) and again in Fig. 6-36(c). Calculate the maximum bending stress at midspan,
and, for the same section, locate the neutral axis. Neglect the weight of the beam.

4 kN (total)

N

(a) (b}
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Bending about Both Principal Axis — Example Problem

Solution

The maximum bending in the p.l’ﬂne af the applied load occurs at midspan, El'l:l.é
according to Example 3-8, it is equal to w,L*/8 or WL/8, where W is the tm:al_
load on span L. Hence, :

M=‘EL=4:3=1.51(N-:11

Next, this moment is resolved into components acting around the respective axes,
and I, and [, are calculated.

M,=Mcosa =15 x V3/2 = 1.3kN'm
M,=Msna =15 x 05 =075 kN-m
I, = 100 x 150°/12 = 28.1 x 10° mm*
I, = 150 X 100°/12 = 12.5 x 10° mm*
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Bending about Both Principal Axis — Example Problem

By considering the sense of the moment components, it can be concluded that
the maximum tensile stress occurs at A. Similar reasoning applies when consid-
ering the other corner points. Alternatively, the values for the coordinate points
can be substituted directly into Eq. 6-41. On either basis,

_ M(—cy)  Mycy 1.3 X 10° x 75  0.75 x 10° x 50

AT T L T T ®Ix10° T 125 x 108
= +3.47 + 3.00 = +6.47 MPa

o5 = +3.47 — 3.00 = +0.47 MPa

e = —3.47 — 3.00 = —6.47 MPa

op = —3.47 + 3.00 = —-0.47 MPa

Note that the stress magnitudes on diametrically opposite corners are numerically -
equal.
The neutral axis is located by the angle B, using Eq. 6-43:

28.1 x 10°
12.5 x 10°

tan 3 = tan 30° = 1.30 or B = 52.4°

Alternatively, it can be found from the stress distribution, which varies linearly
between any two points. For example, from similar triangles, a/(150 — a) =
0.47/6.47, giving a = 10.2 mm. This locates the neutral axis shown in Fig. 6-36(¢c)
as it must pass through the section centroid. These results lead to the same B.



Bending about Both Principal Axis — Example Problem
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~3.47 — 3.00 = —6.47 MPa
—3.47 + 3.00 = —0.47 MPa
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equal.
The neutral axis is located by the angle B, using Eq. 6-43:
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Fig. 6-36




Elastic Bending with Axial Loads

A solution for pure bending around both principal axes of a member can
be extended to include the effect of axial loads by employing superpo-
sition. Such an approach is applicable only in the range of elastic behavior
of members. Further, if an applied axial force causes compression, a
member must be stocky, lest a buckling problem of the type considered
in Chapter 11 arises. With these reservations, Eq. 6-41 can be generalized
to read

Pi ‘]‘ P#
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£
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Fig. 6-39
P M.y M,z
L= + 6-45
T 4T 1, (6-45)




Elastic Bending with Axial Loads — Example Problem

A 50 by 75 mm, 1.5 m long elastic bar of negligible weight is loaded as shown in
mm in Fig. 6-40(a). Determine the maximum tensile and compressive stresses
acting normal to the section through the beam.

3.6 kN

l 75
25 kN { 25 kN
" I f .
7 %ﬁ
375
L——Liﬂzﬁ——)-l
{a)
3.6 kN
25 kN 25 kl"ﬁl
e ' [
L*L*HEE;)—T
2.7 kN 0.9 kN

(b) (c)



Elastic Bending with Axial Loads — Example Problem

P 25 x 10° )
o = R ﬁ,ﬁT MPa (tension)
Mec 6M. 6 x 1.013 x 10°
== e IS eme—— T —— iz .
=TT T 50 x 752 .6 MPa
—14.9 MPa
. Jua 1._..1 A
i B

+6.67 MPa +21.6 MPa +2B8.3 MPa

(d] (e) () Fig. 6-40
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Elastic Bending with Axial Loads — Example Problem

These stresses act normal to the section of the beam and decrease linearly toward
the neutral axis as in Fig. 6-40(e). Then, to obtain the compound stress for any
particular element, bending stresses must be added algebraically to the direct
tensile stress. Thus, as may be seen from Fig. 6-40(f). at point A, the resultant
normal stress is 14.9 MPa compression, and at B, it is 28.3 MPa tension. Side
views of the stress vectors as commonly drawn are shown in the figure.

Although in this problem, the given axial force is larger than the transverse
force, bending causes higher stresses. However, the reader is cautioned not to
regard slender compression members 1n the same light.

Note that in the final result, the line of zero stress, which is located at the
centroid of the section for flexure, moves upward. Also note that the local
stresses, caused by the concentrated force, which act normal to the top surface
of the beam, were not considered. Generally. these stresses are treated indepen-

dently as local bearing stresses.

=4

=21.6 MPa —14.9 MPa
—T— ——— -+ A
- '
- B
+6.67 MPa +21.6 MPa +28.3 MPa

(d) (e) (f) Fig. 6-40



Elastic Bending with Axial Loads — Example Problem

A 50 by 50 mm elastic bar bent into a U shape, as in Fig. 6-41(a), is acted upuﬁ'@.':
by two opposing forces P of 8.33 kN each. Determine the maximum normal stressﬁ_f
occurring at section A-B. :

Solution

The section to be investigated is in the curved region of the bar, but this makesg
no essential difference in the procedure. First, a segment of the bar is taken as
a free-body, as shown in Fig. 6-41(b). At section A-B, the axial force, applied at
the centroid of the section, and the bending moment necessary to maintain equi-
librinm are determined. Then, each element of the force system is considered
separately. The stress caused by the axial forces is :

P 8.33 % 10°
o=—= = 3.33 MPa (compression)
A 50 x 50
3,33 MPa 128 MPa 131 MFa_::
1 .
- + T = -
o . 25 |
250 ; s[] 5 ¥ ?.
1\ 80.9 MPa 77.6MPa
2083 M*m
\ {c)
' \\ P
~/ B33 kN ' 131 MPa 131 MPa




Elastic Bending with Axial Loads — Example Problem

EXAMPLE 619 (a)

Consider a tapered block having a rectangular cross section at the base, as shown

in Figs. 6-42(a) and (b). Determine the maximum eccentricity e such that the stress
at B caused by the applied force P is zero.

Solution (b)

In order to maintain applied force P in equilibrium, there must be an axial com-
pressive force P and a moment Pe at the base having the senses shown. The stress
caused by the axial force is ¢ = —P/A = - P/bh, whereas the largest tensile

stress caused by bending is omex = Mell = M/S = 6Pelbh*, where bH%/6 is the w +Aas

elastic section modulus of the rectangular cross section. To satisfy the condition
for having stress at B equal to zero, it follows that

og = —— + —= =10 or e =

P 6Pe h
6

which means that if force P is applied at a distance of h/6 from the centroidal (e LU,J
axis of the cross section, the stress at B is just zero. Stress distributions across

(@ A/ﬂ s
A

og=0

the base corresponding, respectively, to the axial force and bending moment are Fig. 6-42 Location of force P
shown in Figs. 6-42(c) and (d), and their algebraic sum in Fig. 6-42(e). causing zero stress at B.
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Elastic Bending with Axial Loads — Example Problem

- In the above problem, if force P were applied closer to the centroid of
the section, a smaller bending moment would be developed at section A—
B, and there would be some compression stress at B. The same argument
may be repeated for the force acting to the right of the centroidal axis.
Hence, a practical rule, much used by the early designers of masonry
structures, may be formulated thus: if the resultant of all vertical forces
acts within the middle third of the rectangular cross section, there is no
tension in the material at that section. 1t is understood that the resultant
acts in a vertical plane containing one of the axes of symmetry of the
rectangular cross-sectional area.

The foregoing discussion may be generalized in order to apply to any
planar system of forces acting on a member. The resultant of these forces

may be made to intersect the plane of the cross section, as is shown iy
Fig. 6-43. At the point of intersection of this resultant with the section,

it may be resolved into horizontal and vertical components. If the vertjca]
component of the resultant fulfills the conditions of the former problem,
no tension will be developed at point B, as the horizontal component
causes only shear stresses. Hence, a more general ‘‘middle-third” e
may be stated thus: there will be no tension at a section of a member of
a rectangular cross section if the resultant of the forces above this sectigp
intersects one of the axes of symmetry of the section within the Imddlﬁ

third.
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Kern of Section — Example Problem

Find the zone over which the vertical downward force P, may be applied to the
rectangular weightless block shown in Fig. 6-45(a) without causing any tensile
stresses at the section A-B.

Solution

The force P = — P, is placed at an arbitrary point in the first quadrant of the yz
coordinate system shown. Then the same reasoning used in the preceding example
shows that with this position of the force, the greatest tendency for a tensile stress
existsat A, With P = —P,, M, = +P,y, and M, = —P,z, setting the stress at

A equal to zero fulfills the limiting condition of the problem. Using Eq. 6-45 allows
the stress at A to be expressed as

Py _ (Py)=bl2)  (=Po2X(=h02)

= l:} =
4 A L. L,
P, P,y P,z
—— + + =0
ot A | BZhi6 ' bH2I6
. Z
Simplifying, I S

hi6 bl
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Kern of Section — Example Problem

z
ﬁ/ -
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Kern of Section — Example Problem

Z y
Y

which is an equation of a straight line. It shows that when z = 0, y = b/6; and
when y = 0, z = h/6. Hence, this line may be represented by line CD in Fig. 6-
45(b). A vertical force may be applied to the block anywhere on this line and the
stress at A will be zero. Similar lines may be established for the other three corners
of the section; these are shown in Fig. 6-45(b). If force P is applied on any one
of these lines or on any line parallel to such a line toward the centroid of the
section, there will be no tensile stress at the corresponding corner. Hence, force
P may be applied anywhere within the ruled area in Fig. 6-45(b) without causing
tensile stress at any of the four corners or anywhere else. This zone of the cross-
sectional area is called the kern of a section. By limiting the possible location of
the force to the-lines of symmetry of the rectangular cross section, the results
found in this example verify the *‘middle-third” rule discussed in Example 6-19.
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Most people fail in life because they MAJOR in MINOR things.

People who succeed at the highest level are not LUCKY. They are doing something
differently than everyone else.

Your income right now is a result of your standards. It is not the industry, it is not the
economy.

Whatever you hold in your mind on a consistent basis is exactly what you will
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Why live an ordinary life, when you can live an extraordinary one.

experience in your life. g gé
Stop being afraid of what ¢ ; d?p wron 'n’b%}aﬂ getting EXCITED about what could
go RIGHT. i o

Live life fully while you are here. Experience everything. Take care of yourself and
your friends. Have fun, be crazy, be weird. Go out and screw up! You are going to
anyway, so you must as well enjoy the process. Take the opportunity to learn from

your mistakes. Don’t try to be perfect; just be an excellent example of being human.

Courtesy: Anthony Robbins



